Properties

Label 6408480.a.13.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 79 $
Index $ 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,79)$
Order: \(492960\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
Index: \(13\)
Exponent: \(246480\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
Generators: $\left(\begin{array}{rr} 28 & 22 \\ 11 & 51 \end{array}\right), \left(\begin{array}{rr} 4 & 75 \\ 33 & 66 \end{array}\right), \left(\begin{array}{rr} 78 & 0 \\ 0 & 78 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), maximal, nonabelian, and quasisimple (hence nonsolvable and perfect). Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_{13}.\SL(2,79)$
Order: \(6408480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 79 \)
Exponent: \(246480\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Quotient group ($Q$) structure

Description: $C_{13}$
Order: \(13\)
Exponent: \(13\)
Automorphism Group: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{12}\times \PSL(2,79).C_2$
$\operatorname{Aut}(H)$ $\PGL(2,79)$, of order \(492960\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed