Subgroup ($H$) information
| Description: | $C_2\times D_{10}$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 36 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
11 & 20 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
31 & 1 \\
0 & 9
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_{10}.(C_4\times D_4)$ |
| Order: | \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5:(C_4\times C_2^8.C_2^3)$ |
| $\operatorname{Aut}(H)$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{W}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | not computed |
| Projective image | not computed |