Properties

Label 640.19150.2.d1
Order $ 2^{6} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.C_2^4$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 15 \\ 10 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{10}.(C_4\times D_4)$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^6.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $F_5\times C_2^6:(C_2\times S_4)$, of order \(61440\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \)
$\card{W}$\(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{10}.(C_4\times D_4)$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{10}.(C_4\times D_4)$
Maximal under-subgroups:$C_{20}:C_2^3$$C_2^3\times F_5$$C_2^3\times F_5$$D_{10}.D_4$$D_{10}.D_4$$C_2^3.D_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed