Properties

Label 64.91.2.c1.b1
Order $ 2^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ac, d, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^3.C_2^3$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4^2:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2^3.C_2^3$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2^3.C_2^3$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2:C_4$$C_2^2:C_4$$C_4^2$$C_4:C_4$
Autjugate subgroups:64.91.2.c1.a1

Other information

Möbius function$-1$
Projective image$C_2^2:C_4$