Properties

Label 64.85.8.g1.h1
Order $ 2^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $abc^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_4\times \OD_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^5$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_8$
Normalizer:$C_4\times \OD_{16}$
Complements:$C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$C_2\times C_8$$\OD_{16}$$\OD_{16}$
Maximal under-subgroups:$C_4$
Autjugate subgroups:64.85.8.g1.a164.85.8.g1.b164.85.8.g1.c164.85.8.g1.d164.85.8.g1.e164.85.8.g1.f164.85.8.g1.g1

Other information

Möbius function$0$
Projective image$C_2^2\times C_4$