Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(2\) |
Generators: |
$\left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
16 & 0 \\
0 & 16
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $\OD_{32}:C_2$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_8$ | ||
Normalizer: | $\OD_{16}:C_2$ | ||
Normal closure: | $D_4$ | ||
Core: | $C_2$ | ||
Minimal over-subgroups: | $D_4$ | $D_4$ | $C_2\times C_4$ |
Maximal under-subgroups: | $C_2$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2^2:C_8$ |