Properties

Label 64.209.2.d1.g1
Order $ 2^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 5 & 4 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 15 & 5 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 8 \\ 8 & 3 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.A_4$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^2\wr C_3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\wr C_3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4^2:C_2^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_4^2:C_2^2$
Maximal under-subgroups:$C_2^2:C_4$$C_2^2:C_4$$C_2^2:C_4$$C_4:C_4$$C_4:C_4$$C_4:C_4$$C_4^2$
Autjugate subgroups:64.209.2.d1.a164.209.2.d1.b164.209.2.d1.c164.209.2.d1.d164.209.2.d1.e164.209.2.d1.f164.209.2.d1.h1

Other information

Möbius function$-1$
Projective image$C_2^4$