Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$c^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.
Ambient group ($G$) information
Description: | $C_2^2\times C_{16}$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Quotient group ($Q$) structure
Description: | $C_2^3$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(2\) |
Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2^2\times C_{16}$ | ||||||
Normalizer: | $C_2^2\times C_{16}$ | ||||||
Minimal over-subgroups: | $C_2\times C_8$ | $C_2\times C_8$ | $C_2\times C_8$ | $C_{16}$ | $C_{16}$ | $C_{16}$ | $C_{16}$ |
Maximal under-subgroups: | $C_4$ |
Other information
Möbius function | $-8$ |
Projective image | $C_2^3$ |