Properties

Label 64.183.32.a1.c1
Order $ 2 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(2\)
Generators: $bc^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^2\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{16}$
Normalizer:$C_2^2\times C_{16}$
Complements:$C_2\times C_{16}$ $C_2\times C_{16}$ $C_2\times C_{16}$ $C_2\times C_{16}$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:64.183.32.a1.a164.183.32.a1.b164.183.32.a1.d164.183.32.a1.e164.183.32.a1.f1

Other information

Möbius function$0$
Projective image$C_2\times C_{16}$