Properties

Label 638880.a.660.A
Order $ 2^{3} \cdot 11^{2} $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_8$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 2 & 4 & 1 & 6 \\ 5 & 3 & 5 & 1 \\ 8 & 10 & 0 & 7 \\ 5 & 8 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 1 & 1 \\ 7 & 5 & 4 & 1 \\ 3 & 4 & 6 & 8 \\ 8 & 3 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 2 & 9 & 8 \\ 3 & 2 & 5 & 9 \\ 1 & 10 & 0 & 9 \\ 6 & 1 & 8 & 7 \end{array}\right), \left(\begin{array}{rrrr} 7 & 7 & 9 & 1 \\ 4 & 3 & 8 & 9 \\ 4 & 8 & 10 & 4 \\ 10 & 4 & 7 & 6 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:C_{20}.D_{12}$
Order: \(638880\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3\times F_{11}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{30}.C_5.C_2^6$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_2^3$
$\card{W}$\(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{11}:C_4$
Normalizer:$C_{11}^3:C_{20}.D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed