Properties

Label 63000000000.a.80._.J
Order $ 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 7 $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^6.(D_5\times S_7)$
Order: \(787500000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Generators: $\langle(1,11,5,15,4,14,3,13,2,12)(6,8,10,7,9)(16,17,18,19,20)(31,34,32,35,33)(36,39,37,40,38) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_5^7.(F_5\times S_8)$
Order: \(63000000000\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{9} \cdot 7 \)
Exponent: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(252000000000\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{9} \cdot 7 \)
$\operatorname{Aut}(H)$ Group of order \(6300000000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$40$
Möbius function not computed
Projective image not computed