Properties

Label 6250000.m.10000._.B
Order $ 5^{4} $
Index $ 2^{4} \cdot 5^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4$
Order: \(625\)\(\medspace = 5^{4} \)
Index: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(5\)
Generators: $\langle(1,5,4,3,2)(11,14,12,15,13)(16,20,19,18,17)(21,22,23,24,25)(26,27,28,29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5^8.\OD_{16}$
Order: \(6250000\)\(\medspace = 2^{4} \cdot 5^{8} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Quotient group ($Q$) structure

Description: $C_5^4.\OD_{16}$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_5^4:(C_4^3:C_2^2)$, of order \(160000\)\(\medspace = 2^{8} \cdot 5^{4} \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(1440000000000\)\(\medspace = 2^{14} \cdot 3^{2} \cdot 5^{10} \)
$\operatorname{Aut}(H)$ $\GL(4,5)$, of order \(116064000000\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{6} \cdot 13 \cdot 31 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed