Subgroup ($H$) information
| Description: | $C_2\times D_{26}$ | 
| Order: | \(104\)\(\medspace = 2^{3} \cdot 13 \) | 
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(26\)\(\medspace = 2 \cdot 13 \) | 
| Generators: | $a^{2}, c^{13}, c^{2}, b^{3}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_{26}:C_{12}$ | 
| Order: | \(624\)\(\medspace = 2^{4} \cdot 3 \cdot 13 \) | 
| Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \) | 
| $\operatorname{Aut}(H)$ | $S_4\times F_{13}$, of order \(3744\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 13 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times F_{13}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $C_{13}:C_6$, of order \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) | 
Related subgroups
Other information
| Möbius function | $1$ | 
| Projective image | $C_{26}:C_6$ | 
