Properties

Label 62208.s.2.D
Order $ 2^{7} \cdot 3^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^4:D_6$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, b^{3}, g, a^{2}g, d^{4}e^{4}, c^{4}d^{5}e^{4}fg, e^{3}g, c^{6}, fg, b^{2}c^{8}d^{4}e^{5}, d^{3}, d^{2}e^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^3.(D_6\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5\wr C_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3.C_2^4:\He_3.C_6.C_2^5$
$W$$C_2\times C_6^4:D_6$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3.(D_6\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times C_6^4:D_6$