Properties

Label 62208.g.24.CC
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: not computed
Generators: $\langle(13,18,17), (1,2,8,7)(3,4,6,5)(13,18)(19,20), (1,8)(2,7)(3,6)(4,5)(13,17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^4.C_2^4.C_2^3$
Normal closure:$C_6^3:(S_3\times S_4)$
Core:$C_3^3\times C_6$
Minimal over-subgroups:$C_3^4.D_4^2$$C_3^4.D_4^2$$C_3^4.C_2^4.C_2^2$
Maximal under-subgroups:$C_6^2:S_3^2$$C_6^2.S_3^2$$C_6^2.C_6^2$$C_6^2.S_3^2$$C_6^2.S_3^2$$C_6^2.S_3^2$$C_6^2.S_3^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$