Properties

Label 62208.g.18.Y
Order $ 2^{7} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(C_2\times D_4)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,5,6,4)(13,16,18,20,17,19), (10,11)(14,15)(17,18)(19,20), (2,7)(3,6)(13,18,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^3.C_2^6.C_2^4$
$W$$C_6^3:(C_2\times D_4)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(S_3\times D_6^2).D_4$
Normal closure:$C_6^4:(C_2\times S_4)$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_6^3.(S_3\times D_4)$$(S_3\times D_6^2).D_4$
Maximal under-subgroups:$C_2^3.S_3^3$$C_6^3.D_4$$C_6^3.D_4$$C_2^3.S_3^3$$C_6^3:(C_2\times C_4)$$C_6^3.D_4$$C_6^3.D_4$$D_{12}:D_6:C_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$