Subgroup ($H$) information
| Description: | $C_6^3.(C_2\times D_4)$ |
| Order: | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(3,5,6,4)(13,16,18,20,17,19), (10,11)(14,15)(17,18)(19,20), (2,7)(3,6)(13,18,17) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_6^4:(C_2\times S_4)$ |
| Order: | \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \) |
| $\operatorname{Aut}(H)$ | $C_3^3.C_2^6.C_2^4$ |
| $W$ | $C_6^3:(C_2\times D_4)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_6^3:(S_3\times S_4)$ |