Subgroup ($H$) information
| Description: | $(S_3\times C_6^2):S_4$ |
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{3}bc^{2}d^{3}f^{5}g^{4}, f^{3}, f^{2}, g^{2}, g^{3}, b^{2}cdef^{2}g^{3}, c^{2}d^{2}fg^{3}, ef^{3}g^{3}, d^{3}f^{3}g^{3}, a^{2}d^{2}f^{5}g^{2}$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^3:(S_4^2:C_2^2)$ |
| Order: | \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_3^4.D_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $(C_2^2\times C_6^2).D_6^2$ |
| $W$ | $(S_3\times C_6^2):S_4$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_3^3:(S_4^2:C_2^2)$ |