Properties

Label 6144.yu.4.H
Order $ 2^{9} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^3.(C_2\times A_4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(17,18)(19,20)(21,22)(23,24), (9,13,10,14)(11,15,12,16)(17,22,18,21)(19,23,20,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_4^3.\GL(2,\mathbb{Z}/4)$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5:F_5^2$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
$\operatorname{Aut}(H)$ $\GL(2,3).C_2^6$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
$W$$C_4^2.(C_2^3\times A_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^3.(C_2^2\times A_4)$
Normal closure:$C_4^3.(C_2^2\times A_4)$
Core:$C_4^3.A_4$
Minimal over-subgroups:$C_4^3.(C_2^2\times A_4)$
Maximal under-subgroups:$C_4^3.A_4$$(C_2^2\times C_4^2).A_4$$C_2^3.C_2^6$$C_4^3:C_6$$C_4^2:(C_3\times D_4)$$C_2^4.(C_2\times A_4)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5:D_5^3$