Properties

Label 6144.hg.6.O
Order $ 2^{10} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: not computed
Generators: $\langle(13,14)(15,16)(21,22)(23,24), (1,4)(2,3)(5,7)(6,8)(9,14)(10,13)(11,16)(12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^8.S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3.C_2^2$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
$\operatorname{Aut}(H)$ not computed
$W$$C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5.C_2^5.C_2$
Normal closure:$C_2^8.S_4$
Core:$C_4^2:C_2^3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed