Properties

Label 6144.bv.16.x1
Order $ 2^{7} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4.D_{24}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 29 & 26 \\ 30 & 31 \end{array}\right), \left(\begin{array}{rr} 19 & 8 \\ 24 & 27 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 15 & 1 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 21 & 24 \\ 8 & 13 \end{array}\right), \left(\begin{array}{rr} 12 & 11 \\ 9 & 19 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_8^2.\GL(2,\mathbb{Z}/4)$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_3:(C_2^2.C_2^6.C_2^3)$
$W$$C_2\times D_{24}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_{16}).D_{24}$
Normal closure:$C_2\times C_8.\GL(2,\mathbb{Z}/4)$
Core:$C_2^2\times C_{16}$
Minimal over-subgroups:$C_2\times C_8.\GL(2,\mathbb{Z}/4)$$D_{24}.C_4^2$
Maximal under-subgroups:$D_{24}:C_2^2$$C_2\times C_{24}.C_4$$C_2^2\times C_{48}$$C_4.D_{24}$$C_2^3.\SD_{16}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(C_4\times A_4) . (C_2^2\times C_4)$