Subgroup ($H$) information
Description: | $C_2\times C_4\times C_{48}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
9 & 22 \\
18 & 23
\end{array}\right), \left(\begin{array}{rr}
29 & 0 \\
0 & 29
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
13 & 24 \\
8 & 5
\end{array}\right), \left(\begin{array}{rr}
28 & 11 \\
25 & 3
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
27 & 24 \\
8 & 19
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $C_8^2.\GL(2,\mathbb{Z}/4)$ |
Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^3\times A_4).C_2^6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2.C_2^6.C_2^6$ |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_2^3:D_{24}$ |