Properties

Label 6144.bes.24.bc1
Order $ 2^{8} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{3}c^{5}d^{3}e^{4}, c^{6}d^{4}, c^{2}d^{6}e^{7}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^3.(C_2^2\times S_4)$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_8^2.C_6.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^6.C_2^6.C_2$
$W$$C_2\times D_4^2$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2^2\times C_4).C_2^5$
Normal closure:$(C_4\times C_8^2):D_6$
Core:$C_2^3$
Minimal over-subgroups:$(C_2^2\times C_4).C_2^5$
Maximal under-subgroups:$(C_2\times Q_8):D_4$$(C_2\times Q_{16}):C_2^2$$D_8:C_2^3$$\OD_{16}.C_2^3$$C_4^2:C_2^3$$C_4^2.C_2^3$$D_4.C_4^2$$\OD_{16}.D_4$$\OD_{16}.D_4$$\OD_{16}:D_4$$\OD_{16}.D_4$$C_4^2:D_4$$C_4^2.D_4$$C_4^2.D_4$$C_4^2.D_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_8^2:(S_3\times D_4)$