Properties

Label 6144.bbe.8.H
Order $ 2^{8} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4^3:C_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,6)(7,8)(13,14)(15,16)(21,22)(23,24), (1,12,23)(2,11,24)(3,10,22)(4,9,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_4^3:C_2^2:S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:A_4.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2:C_3.C_2^4.C_2^5$
$W$$C_2^4.S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.\GL(2,\mathbb{Z}/4)$
Normal closure:$C_4^3.(C_2^2\times A_4)$
Core:$C_4^3:C_2^2$
Minimal over-subgroups:$C_4^3.(C_2^2\times A_4)$$C_2^4.\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^5.A_4$$C_2^5.A_4$$C_4^3:C_6$$C_4^3:C_6$$C_4^3:C_2^2$$C_2^5:C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed