Properties

Label 6144.bbe.2.A
Order $ 2^{10} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.(C_2^3\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(5,6)(7,8)(13,14)(15,16)(21,22)(23,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_4^3:C_2^2:S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:A_4.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2:A_4.C_2^4.C_2^4$
$\card{W}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^3:C_2^2:S_4$
Complements:$C_2$
Minimal over-subgroups:$C_4^3:C_2^2:S_4$
Maximal under-subgroups:$C_4^2.(C_2^3\times A_4)$$C_4^2.(C_2^2\times S_4)$$(C_2^2\times C_4^2):S_4$$C_4^2.(C_2^2\times S_4)$$C_4^2.(C_2^2\times S_4)$$C_4^2.(C_2^2\times S_4)$$C_4.D_4.C_2^5$$C_2^5.S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed