Properties

Label 6144.bbe.16.A
Order $ 2^{7} \cdot 3 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:A_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,12,23)(2,11,24)(3,10,22)(4,9,21)(5,15,17)(6,16,18)(7,13,19)(8,14,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_4^3:C_2^2:S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:A_4.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2^6.\POPlus(4,3)$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\card{W}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^3:C_2^2:S_4$
Minimal over-subgroups:$(C_2^2\times C_4^2):A_4$$C_4^2.(C_2^2\times A_4)$$C_2\times C_4^2.S_4$$C_2^5:S_4$$C_4^2.(C_2^2\times A_4)$$C_4^3:A_4$
Maximal under-subgroups:$C_4^2:A_4$$C_4^2:C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed