Properties

Label 6144.bbe.12.BZ
Order $ 2^{9} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.C_2^6.C_2^2$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\langle(5,6)(7,8)(13,14)(15,16)(21,22)(23,24), (13,14)(15,16)(17,19,18,20)(21,24,22,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Ambient group ($G$) information

Description: $C_4^3:C_2^2:S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2:A_4.C_2^4.C_2^4$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
$\operatorname{Aut}(H)$ Group of order \(1048576\)\(\medspace = 2^{20} \)
$W$$D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^3.C_2^4.C_2^3$
Normal closure:$C_4^3:C_2^2:S_4$
Core:$C_4^3:C_2^2$
Minimal over-subgroups:$C_2^4.\GL(2,\mathbb{Z}/4)$$C_2^3.C_2^4.C_2^3$
Maximal under-subgroups:$C_4^3:C_2^2$$C_2^3.C_2^5$$C_4^2:C_2^4$$(C_2\times \OD_{16}):D_4$$C_2^5.D_4$$(C_2\times \OD_{16}):D_4$$C_2^5.D_4$$(C_2\times \OD_{16}):D_4$$C_2^5.D_4$$C_4^2:C_2^4$$C_2^5.D_4$$C_2^5.D_4$$(C_2\times C_4^3):C_2$$C_2^5.D_4$$(C_2\times C_4^3):C_2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed