Properties

Label 608.44.304.b1.a1
Order $ 2 $
Index $ 2^{4} \cdot 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(304\)\(\medspace = 2^{4} \cdot 19 \)
Exponent: \(2\)
Generators: $b^{2}c^{19}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{38}.C_4^2$
Order: \(608\)\(\medspace = 2^{5} \cdot 19 \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4:C_{76}$
Order: \(304\)\(\medspace = 2^{4} \cdot 19 \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Automorphism Group: $C_2^5:C_{18}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $D_4\times C_{18}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{18}\times C_2^4:C_3.D_4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{38}.C_4^2$
Normalizer:$C_{38}.C_4^2$
Minimal over-subgroups:$C_{38}$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:608.44.304.b1.b1608.44.304.b1.c1

Other information

Möbius function$0$
Projective image$C_4:C_{76}$