Properties

Label 6050.e.550.a1.b1
Order $ 11 $
Index $ 2 \cdot 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Exponent: \(11\)
Generators: $b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{55}:F_{11}$
Order: \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times F_{11}$
Order: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \)
Outer Automorphisms: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5^2.(C_{20}\times D_4)$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}\times C_{55}$
Normalizer:$C_{55}:F_{11}$
Complements:$C_5\times F_{11}$
Minimal over-subgroups:$C_{11}^2$$C_{55}$$C_{11}:C_5$$C_{11}:C_5$$C_{11}:C_5$$C_{11}:C_5$$C_{11}:C_5$$D_{11}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:6050.e.550.a1.a1

Other information

Möbius function$55$
Projective image$C_{55}:F_{11}$