Subgroup ($H$) information
Description: | $C_5$ |
Order: | \(5\) |
Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Exponent: | \(5\) |
Generators: |
$c^{2}d^{8}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_5^2:S_4$ |
Order: | \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_5:S_4$ |
Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Automorphism Group: | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(S_4\times C_5^2):\GL(2,5)$, of order \(288000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $60$ |
Projective image | $C_5^2:S_4$ |