Properties

Label 600.178.120.a1.f1
Order $ 5 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(5\)
Generators: $c^{2}d^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_5^2:S_4$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_5:S_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_4\times C_5^2):\GL(2,5)$, of order \(288000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$A_4\times C_5^2$
Normalizer:$C_5^2:S_4$
Complements:$C_5:S_4$ $C_5:S_4$ $C_5:S_4$ $C_5:S_4$ $C_5:S_4$
Minimal over-subgroups:$C_5^2$$C_{15}$$C_{10}$$D_5$
Maximal under-subgroups:$C_1$
Autjugate subgroups:600.178.120.a1.a1600.178.120.a1.b1600.178.120.a1.c1600.178.120.a1.d1600.178.120.a1.e1

Other information

Möbius function$60$
Projective image$C_5^2:S_4$