Properties

Label 600.157.2.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(2\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{2}, c^{10}, b^{2}, b^{5}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^2.C_6$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_5:F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5^2.C_6$
Minimal over-subgroups:$D_5^2.C_6$
Maximal under-subgroups:$D_5\times C_{15}$$D_5\times C_{15}$$C_{15}:D_5$$D_5^2$$C_3\times D_{10}$$C_3\times D_{10}$

Other information

Möbius function$-1$
Projective image$D_5:F_5$