Subgroup ($H$) information
| Description: | $C_{15}$ |
| Order: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$b^{40}, a^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_{12}\times C_5^2$ |
| Order: | \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Quotient group ($Q$) structure
| Description: | $C_5\times D_4$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4\times S_3\times D_4).S_5$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\operatorname{res}(S)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_5\times C_{60}$ | ||
| Normalizer: | $D_{12}\times C_5^2$ | ||
| Complements: | $C_5\times D_4$ | ||
| Minimal over-subgroups: | $C_5\times C_{15}$ | $C_{30}$ | $C_5\times S_3$ |
| Maximal under-subgroups: | $C_5$ | $C_3$ |
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $C_5\times D_{12}$ |