Subgroup ($H$) information
Description: | $C_2\times C_7^3:S_4$ |
Order: | \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$ac^{2}d^{15}e^{6}, d^{21}e^{5}f^{9}, e^{2}, b^{2}cd^{22}e^{13}f^{2}, d^{6}, f^{2}, b^{3}d^{24}e^{12}f^{2}, c^{3}d^{39}e^{12}$
|
Derived length: | $4$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_2\times C_7^3:(C_6^2:S_4)$ |
Order: | \(592704\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4:\He_3.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $12$ |
Möbius function | not computed |
Projective image | not computed |