Subgroup ($H$) information
| Description: | $C_7^3:C_3^2:S_3$ |
| Order: | \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \) |
| Index: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Generators: |
$ac^{2}d^{36}e^{9}f^{7}, e^{2}f^{4}, c^{2}d^{32}e^{10}, c^{2}d^{18}e^{12}f^{6}, b^{2}c^{2}d^{6}e^{5}f^{8}, f^{2}, d^{6}e^{4}f^{6}$
|
| Derived length: | $4$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_2\times C_7^3:(C_6^2:S_4)$ |
| Order: | \(592704\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7^{3} \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^3.C_2^4:\He_3.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_7^3.\He_3.Q_8.C_6$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $16$ |
| Möbius function | not computed |
| Projective image | not computed |