Properties

Label 592704.d.32._.C
Order $ 2 \cdot 3^{3} \cdot 7^{3} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:C_3^2:S_3$
Order: \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{2}d^{36}e^{9}f^{7}, e^{2}f^{4}, c^{2}d^{32}e^{10}, c^{2}d^{18}e^{12}f^{6}, b^{2}c^{2}d^{6}e^{5}f^{8}, f^{2}, d^{6}e^{4}f^{6}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_7^3:(C_6^2:S_4)$
Order: \(592704\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4:\He_3.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_7^3.\He_3.Q_8.C_6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$16$
Möbius function not computed
Projective image not computed