Subgroup ($H$) information
Description: | $C_{20}\times D_{35}$ |
Order: | \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \) |
Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rr}
33 & 0 \\
0 & 370
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 354
\end{array}\right), \left(\begin{array}{rr}
48 & 0 \\
0 & 307
\end{array}\right), \left(\begin{array}{rr}
8 & 0 \\
0 & 179
\end{array}\right), \left(\begin{array}{rr}
125 & 0 \\
0 & 64
\end{array}\right), \left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_{420}.D_{70}$ |
Order: | \(58800\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_{42}$ |
Order: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Automorphism Group: | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(645120\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times C_4\times F_5\times F_7$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |