Properties

Label 5880.x.420.a1.a1
Order $ 2 \cdot 7 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 159 & 0 \\ 0 & 159 \end{array}\right), \left(\begin{array}{rr} 490 & 0 \\ 0 & 490 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{245}\times \SL(2,3)$
Order: \(5880\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \)
Exponent: \(2940\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $A_4\times C_{35}$
Order: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $C_2\times C_{12}\times S_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times A_4).C_2^3$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{245}\times \SL(2,3)$
Normalizer:$C_{245}\times \SL(2,3)$
Minimal over-subgroups:$C_{98}$$C_{70}$$C_{42}$$C_{28}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Möbius function not computed
Projective image$A_4\times C_{35}$