Properties

Label 588.21.3.a1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{28}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(3\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{3}, a^{6}, c, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_7^2:C_{12}$
Order: \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_7^2$, of order \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7\)
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_7^2:C_{12}$
Complements:$C_3$
Minimal over-subgroups:$C_7^2:C_{12}$
Maximal under-subgroups:$C_7\times C_{14}$$C_7:C_4$$C_{28}$

Other information

Möbius function$-1$
Projective image$C_7:F_7$