Properties

Label 588.21.147.a1.a1
Order $ 2^{2} $
Index $ 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(147\)\(\medspace = 3 \cdot 7^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group.

Ambient group ($G$) information

Description: $C_7^2:C_{12}$
Order: \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_7^2$, of order \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_7:C_{12}$
Normalizer:$C_7:C_{12}$
Normal closure:$C_7:C_4$
Core:$C_2$
Minimal over-subgroups:$C_7:C_4$$C_{28}$$C_{12}$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-7$
Projective image$C_7:F_7$