Properties

Label 5832.he.648.l1
Order $ 3^{2} $
Index $ 2^{3} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\langle(1,7,11)(3,5,17)(9,16,12), (2,10,4)(3,17,5)(6,15,13)(8,14,18)(9,16,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_3^2.Q_8.D_6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^3\times C_6$
Normalizer:$C_3^4:D_6$
Normal closure:$\He_3^2$
Core:$C_1$
Minimal over-subgroups:$C_3^3$$C_3^3$$\He_3$$\He_3$$C_3^3$$\He_3$$\He_3$$C_3\times C_6$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Number of subgroups in this autjugacy class$144$
Number of conjugacy classes in this autjugacy class$24$
Möbius function$0$
Projective image$\He_3^2:C_2^3$