Properties

Label 5832.he.2916.b1
Order $ 2 $
Index $ 2^{2} \cdot 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(2\)
Generators: $\langle(1,13)(2,7)(3,8)(4,17)(5,15)(6,16)(9,18)(10,12)(11,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_3^2.Q_8.D_6.C_2^3$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^2:S_3$
Normalizer:$C_6^2:S_3$
Normal closure:$C_3^3:D_6$
Core:$C_1$
Minimal over-subgroups:$C_6$$C_6$$S_3$$S_3$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$\He_3^2:C_2^3$