Subgroup ($H$) information
Description: | $C_3^2:D_6\times S_4$ |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Index: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(9,11,16)(10,15,12)(13,17,14), (2,8)(4,5), (10,14,11)(13,15,16), (10,13) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $\GL(2,3).C_2^6.\GL(3,2)$ |
Order: | \(580608\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $5$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\AGL(2,3).C_2^4.\PSL(2,7)$ |
$\operatorname{Aut}(H)$ | $S_4\times \AGL(2,3).C_2^2$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $112$ |
Möbius function | not computed |
Projective image | not computed |