Properties

Label 5760.fv.720.bl1.a1
Order $ 2^{3} $
Index $ 2^{4} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(5,8,6,7)(10,13)(11,12), (5,7)(6,8)(10,11)(12,13), (5,6)(7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times A_4$
Normalizer:$C_2^6:C_6$
Normal closure:$D_4\times A_5$
Core:$C_2$
Minimal over-subgroups:$C_3\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_4$
Autjugate subgroups:5760.fv.720.bl1.a2

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$0$
Projective image$C_2^4:\GL(2,4)$