Properties

Label 5760.fv.72.be1.a2
Order $ 2^{4} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times D_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(9,12,13,11,10), (1,3)(2,4)(5,6)(7,8)(9,12)(10,13), (1,2)(3,4)(7,8), (5,6)(7,8), (1,3)(2,4)(5,7)(6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{20}:C_2^4$
Normal closure:$C_2^2\times D_4\times A_5$
Core:$C_2$
Minimal over-subgroups:$D_4\times D_{10}$$D_4\times D_{10}$$D_4\times D_{10}$
Maximal under-subgroups:$C_2\times D_{10}$$C_5:D_4$$C_2\times D_{10}$$C_5:D_4$$C_5\times D_4$$D_{20}$$C_4\times D_5$$C_2\times D_4$
Autjugate subgroups:5760.fv.72.be1.a15760.fv.72.be1.b15760.fv.72.be1.b2

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_2^4:\GL(2,4)$