Subgroup ($H$) information
| Description: | $C_{10}$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Index: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\langle(9,12,13,11,10), (1,3)(2,4)(5,7)(6,8)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_4\times A_4\times A_5$ |
| Order: | \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $36$ |
| Möbius function | $0$ |
| Projective image | $D_4\times A_4\times A_5$ |