Subgroup ($H$) information
| Description: | $Q_{16}$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$a^{3}, d^{3}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_3\times Q_{16}.A_4$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_3\times A_4$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_8.(D_6\times S_4)$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Möbius function | $-12$ |
| Projective image | $C_2^3.C_6^2$ |