Properties

Label 576.7437.3.b1.c1
Order $ 2^{6} \cdot 3 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}.A_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{3}, cd^{18}, bcd^{6}, d^{3}, d^{12}, a^{2}d^{20}, d^{18}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_3\times Q_{16}.A_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_8.(D_6\times S_4)$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_{16}.A_4$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_3\times Q_{16}.A_4$
Maximal under-subgroups:$\SL(2,3):C_2^2$$\SL(2,3):C_2^2$$C_8.A_4$$D_8:C_2^2$$C_3\times Q_{16}$
Autjugate subgroups:576.7437.3.b1.a1576.7437.3.b1.b1

Other information

Möbius function$-1$
Projective image$C_2^3.C_6^2$