Properties

Label 576.7437.2.a1.b1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8.C_6^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}d^{21}, cd^{18}, bcd^{6}, d^{6}, d^{12}, a^{2}d^{12}, d^{8}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_3\times Q_{16}.A_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_8.(D_6\times S_4)$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $S_3\times S_4^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(S)$$\GL(2,\mathbb{Z}/4):D_6$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_{16}.A_4$
Complements:$C_2$
Minimal over-subgroups:$C_3\times Q_{16}.A_4$
Maximal under-subgroups:$\SL(2,3):C_6$$\SL(2,3):C_6$$C_6.C_2^4$$\SL(2,3):C_2^2$$\SL(2,3):C_2^2$$\SL(2,3):C_2^2$$Q_8\times C_3^2$
Autjugate subgroups:576.7437.2.a1.a1

Other information

Möbius function$-1$
Projective image$D_4\times A_4$