Properties

Label 576.6608.4.o1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b, d^{8}, c^{2}, c^{3}, d^{18}, d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_8:S_3^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_6^2.C_2^4$
$\operatorname{Aut}(H)$ $D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4\times S_3^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8:S_3^2$
Minimal over-subgroups:$D_{12}:D_6$$D_4\times S_3^2$$C_{24}:D_6$
Maximal under-subgroups:$C_{12}:S_3$$C_3\times D_{12}$$C_3\times D_{12}$$S_3\times D_6$$D_6:S_3$$S_3\times D_4$$S_3\times D_4$

Other information

Möbius function$2$
Projective image$D_4\times S_3^2$