Subgroup ($H$) information
| Description: | $D_6:S_3$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(2,4,6), (1,3,5)(2,6,4), (3,5)(4,6)(7,14,10,9)(8,11,13,12), (7,10)(8,13)(9,14)(11,12), (4,6)(7,8)(9,11)(10,13)(12,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_2^3.\SOPlus(4,2)$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $D_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_2^6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $D_6\wr C_2$ |