Subgroup ($H$) information
| Description: | $C_4\wr C_2$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$\langle(1,2)(3,4)(5,6)(8,11,13,12), (3,5)(4,6)(7,14,10,9)(8,11,13,12), (7,10)(8,13)(9,14)(11,12), (4,6)(7,8)(9,11)(10,13)(12,14), (8,13)(11,12)\rangle$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2^3.\SOPlus(4,2)$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_2^6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| $\operatorname{res}(S)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ |
| Möbius function | $1$ |
| Projective image | $D_6\wr C_2$ |