Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$d^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $(C_6\times C_{12}).D_4$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_4.\SOPlus(4,2)$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_2^6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(S)$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_4.\SOPlus(4,2)$ |